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*RHIC is the Relativistic Heavy Ion Collider which is being studied 

at Brookhaven National Laboratory. It is a colliding machine with 

superconducting magnets. This report has been issued at BNL as 

RHIC Technical Note No. 15, December 10, 1985. 
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I. Introduction 

It is essential to state at the outset that there is no unique way of 

shuffling magnets. Many factors are involved in deciding how to do it; 

for example, one may take into account not just the linear machine parmeters 

but other things such as size and distribution of magnet errors, magnet 

installation schedule, allowance (or non-allowance) of "unusable" magnets 

and type and scope of diagonostic systems and correction systems. In addition, 

one may be influenced, conciously or unconciously, by the past experiences 

and may be inclined to emphasize some factors over others even when that is 

not justified by technical considerations alone. The example given in this 

note is just that, an example of what one can do under certain assumptions. 

Better ways of shuffling magnets should emerge as more data on field qualities 

would become available. 

For the Tevatron at Fermilab, the goal of shuffling dipoles was a quite 

limited one and, because of that, the problem was a well-defined one.' We 

simply tried to minimize the magnitude of several isolated resonance-driving 

terms, these resonances arising from sextupole (b2 and a2) and octupole (a3 

only) components. The dimensionless figure-of-merit was the magnitude of 

each term relative to what one should expect from the distribution of b2, a2 

or a3 if the shuffling were not done. Since this involves only one particular 

harmonic component for each resonance, it is the simplest case of what one 

might call the "global" compensation.* (The nature of "global" and "local" 

compensations will be explained below.) Another example of the global com- 

pensation has been discussed recently3 in which many harmonic components 

near the most important one are minimized by a particular way of shuffling. 

This sort of consideration becomes necessary when one is concerned about the 

loss of linearity in the beam motion, which may cause a reduction in the 

dynamic aperture of the machine, even though isolated resonances are not a 

direct threat to the beam stability. 

In contrast to the global compensation, the "local" compensation is more 

appropriate when ~the source of field errors (or nonlinear elements) is within 

a relatively small area of the ring. One then tries to confine the effect of 
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errors within that area. If the compensation is perfect, there will be no 

effect outside the area although the effect may not be so small inside. 

This scheme has been promoted especially by Tom Collins4 in connection with 

a group of special sextupoles in the SSC lattice. The difference in 

approach between two compensation schemes, global and local, can be seen, 

for example, in two different (but completely equdvalent) forms for AS/B, 

the error in betatron amplitude function B caused by the quadrupole compo- 

nent b, in dipoles: 

a) global 

(AB/B) at $ = -(V/IT) F Jn 
n=-m 4”’ - n2 

ei Wv 

M 
with J, = z (69 b,)k e 

-inqk/v 

k=l 

(1) 

(2) 

$ = betatron phase, 8 = bend angle, v = tune. 

Eq.(l) is valid at any location around the ring so that the source of error 

bl' k=l to M magnets, can be distributed all around the ring. Obviously, 

one tries to minimize J,'s with n near (2~). 

b) local 

Here the source of error b, is confined to a small area. The goal is to 

minimize or completely eliminate (AB/B) at all points outside this area. 

For this, one must consider ACY together with (AS/B). Consider an arbitrary 

point outside and take this point as the origin of phase $ . We then have 

-e2inu M 
(AB/B)-i(Aa - i AB) = 1 (6ebl)ke 

2i$k 

2 sin(2m) k=l 

If M magnets are arranged such that the sumnation in Eq.(3) is zero, the 

errors ACX and (AS/B) are zero everywhere outside the M magnets. 
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It should be noted here that, inside the region under consideration, Acr and 

(AB/B) could be large. If the error is dipole field b. or a, instead of the 

quadrupole field b,, the effect will be on,the horizontal or vertical disper- 

sion. An interesting example of this is the overpass at B0 of the main ring 

at Fermilab. 5 The beam line is raised by 19' near BP in such a way that the 

vertical dispersion around the ring outside the overpass area is minimized 

to less then 0.5m but it is as large as 5m inside the overpass. 

II. Special Considerations for the RHIC 

One obvious difference between the RHIC and the Tevatron is in the 

number of dipoles, 144 in the regular arc sections of the RHIC compared 

with almost 800 for the Tevatron. Calculations which we regarded as impractical 

because of the required computing time for the Tevatron may not be so for 

the RHIC. Another difference (which may be more relevant to the shuffling) 

is that, for the Tevatron, the fluctuations in quadrupole components b, and 

a, were reduced down to 0.5~10~~ (at l", rms) by moving the collared coil 

relative to the surrounding yoke. Since the effect of (b,,a,) was negligible, 

we concentrated on minimizing the effects of nonlinear field components. 

For the RHIC, the situation seems to be the other way around; the linear 

effects due to b, and a, on betatron amplitudes and dispersions may reduce 

the effective aperture of the ring more than nonlinear effects arising from 

higher multipole components such as b2 and a2. Therefore, it is assumed here 

that 

(i) In shuffling dipoles in the regular arc sections, only the effects 

of b, on B,, By and Xp (horizontal dispersion), and the effects of 

a, on Yp (vertical dispersion) are taken into account. The effect 

of b2 is controlled only to the extent that it is no more than one 

would expect from statistical arguments. 

The choice of the number of dipoles to be shuffled each time will un- 

doubtedly depend on the schedule of magnet construction and tunnel prepara- 

tion. It may even change during the course of the project as it did for 
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the Tevatron. Here we take eight or twelve as a reasonable choice cover- 

ing four or six regular cells. With less than eight magnets, it will be 

difficult to balance the errors (particularly when some errors are abnor- 

mal) while more than six cells would cover too much phase advance. 

(ii) Two cases are considered, one with eight dipoles and the other 

with twelve in each group to be shuffled. 

Problems associated with magnet errors in the insertions are rather 

special. They may be compensated for by special shunts or separate power 

supplies. Even if it becomes necessary to shuffle insertion magnets, it 

should be done independently from the shuffling of regular dipoles. It is 

expected that the effect of errors in regular quadrupoles is much less than 

that of dipole errors, Again, any shuffling of quadrupoles should be done 

separately.* 

(iii) All regular quadrupoles are assumed to be free of errors. 

Insertions are assumed to be perfect. 

III. Calculations for Shuffling 

Since the purpose of this note is simply to demonstrate how shuffling 

can be done to minimize various effects of magnet errors, a precise quanti- 

tative estimate of these effects is not an essential requirement. In order 

to simplify the computation, all magnets (quadrupoles and dipoles) in the 

arc sections are treated as a thin lens. Moreover, each insertion is re- 

presented by a matrix that matches all linear parameters with the phase 

advance of 636' in both directions. The cell length is 29.622m and the bend 

angle is 38.85mr per dipole. Shufflings are done for ux= vy= 28.8 

corresponding to phase advance of 910/cell but the performance is checked for 

vx-vy = 28.4 to see that it is not degraded by a small change in tune. 

* The most important error in regular quadrupoles is the fluctuation in the 
integrated gradient field. It may be difficult to shuffle quadrupoles unless 
one is certain of the average over the entire ring. At the same time, it 
does not seem practical to postpone the installation until1 all of them are 
built and measured. 
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The distribution of b,, a, and b2 is all taken to be Gaussian around the 

mean zero with the rms values 

<b > 
1 = 2.1~10-~/25rrun, , <a > = 4.3x10-4/25mm, 2 <b > = 4.6~10-~/(25mm)~ 

Using these numbers, one can estimate the expected value of various errors 

due to 144 dipoles: 

<bl>e8 Bx,y (144)' = 0.0322, (4) 

<AXp/&x> = 1 
r <b,> eB Xp 6, (144)' 

2 sinlnvl J2 
= O.O109m', (5) 

<YplJBy> =TTk-p& <a,> BB Xp By (144)'i = 0.0224mL' (6) 

where, on the right hand side of each equation, eB=0.03885 (bend angle), 

B, = By = 22.lm and Xp=0.99m at each dipole (regarded as a thin lens). 

As the measure of deviations from linearlity in betatron oscillations, we 

use the distortion functions (Bg + A:)', (Bg + A:)% and (Bz t Ai)' de- 

fined by Tom Collins.4 There are two more pairs of functions, r and A, and 

B, and A, but their expected values are not much different from that of 
2 2% 

(Bd+Ad) . Expected values are, for v = 28.8, 

<(+A;)'> 1 1 
=msinl3nv, 

<b2>BB (B$30)'(144)5 = 2.34m-', (7) 

<(B:+@> ' 1 
= iG sin]n(ux+2vy)[ < b2~8B(3x8~/30)4(144)C = 2.34m-', (8) 

22% 1 
<(Bd+Ad) ' 

1 
= 55 sinjn(vx-2vy)I 

<b2> eB(BxB~/Bo)i1144)4 = 3.79m-' (9) 

where the reference value of B is taken to be 0, = lm. 
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One random set of (bl,al,b2) was generated for 144 dipoles and the calcu- 

lations were always made for this particular set. The comparison is made 

between the unique, optimally shuffled arrangement of this set and 1,000 

randomly arranged rings using'the same set of (bl,al,b2). As the figure- 

of-merit, a simple expression 

F.M. ~~Lalexp(i$y)~2 + ILblexp(i+x)i2 f 1Cblexp(2i$x)12 

f I~blexp(2Wy) I2 (10) 

locations was initially used with the supplementary evaluated at dipole 

condition that 

/Eb2exp(3iQx) I & Izb2exp(i$+)/ ($+ : $, f. 2Qy) 11) 

do not exceed the expected rms values. The summations here are over eight 

or twelve dipoles of each group so that one is trying to minimize the effect 

of each group outside the four or six cells under consideration. In shuffling 

magnets in the second group, it might be better to include the predetermined 

sums over the first group. Then for the third shuffling, the sums would in- 

clude the results from the two previous groups, and so on. However, this is 

not necessarily the optimum procedure since the "inside" region in which 

the minimization is not done at all covers larger and larger fraction of the. 

entire ring. For the best overall result, it is not obvious what the largest 

number of groups should be in the sumnation. It was then realized that, for 

a given arrangement of all.magnets, linear lattice parameters (Bx,Oy,Xp,Yp) 

can be calculated rapidly at all locations around the ring so that the figure- 

of-merit could be more directly replated to these parameters. Results presented 

in the next section have been obtained with the figure-of-merit 

F.M. z I(A8x/8x)2 +i(ABy/8y)2 +E(AXp/&,)' +Z(Yp/&y)2 (12) 

where the summations are at all (6x25) quadrupole locations, "inside" as 

well as "outside" regions. Each quantity to be sumned is calculated exactly 

for a given arrangement of dipoles with M dipoles, 2M dipoles, 3M dipoles, 
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and so on where M = 8 or 12. For shuffling the last M dipoles, (144-M) 

dipoles are already determined and the ring is entirely "inside". The local 

nature of balancing is thus shifted gradually to the global nature. In order 

to find the final "optimum" arrangement, approximately 1,000 random cases 

were studied. Although the figure-of-merit does not include the effect of 

sextupole component b2, quantities such as (Bg + A$) summed at all 150 

quadrupole locations were monitored to prevent large nonlinear effect in the 

selected "optimum" arrangement. It is of course possible to add nonlinear 

distortion effects arising from the skew sextupole component a2 for this 

monitoring as long as one is not too greedy. 

IV. Results 

Seven quantities, four of them linear and three nonlinear, are cal- 

culated to test the performance of the shuffling. 

I. 

III. 

V. 

VII. 

&j ~5(AXpl&x)2~4 IV. & ~c(YplJ6y~v 

& {~(+A~)l)L V. & E(Bf+Af)) 

&, {z(B; +A;)+ (Summations are over 150 quadrupole locations.) 

The shuffled arrangement is compared with 1,000 randomly arranged cases with 

eight or twelve dipoles as a unit. The tune used to find the optimum 

arrangement is 28.8 in both horizontal and vertical directions (9l'/regular 

cell) but the same arrangement is used with the tune of 28.4 (89'/regular cell) 

to see the tune dependence of the performance. In comparing the performance, 

the "rank" of 0 means the shuffled case is better than any of 1,000 cases 

and 1,000 means worse than any. 
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Table 1. M = 8 (eight dipoles shuffled each time); pi = 28.8 

expected average of 
1,000 cases 

I. 0.0322 0.0330 

II. 0.0322 0.0319 

III. 0.0109 0.0115 

IV. 0.0224 0.0248 

V. 2.34 2.31 

VI. 2.34 2.39 

VII. 3.79 3.48 
________--------------- 

M = 8; v = 28.4 

Shuffled arrangement I. 

1::: 
IV. 

v;: 
VII. 

largest of 
1,000 cases 

0.0742 0.0074 0 

0.0616 0.0069 0 

0.0291 0.0021 0 

0.0619 0.0044 0 

4.59 1.69 221 

5.10 1.97 365 

8.51 1.14 8 

0.0140 
0.0063 
0.0019 
0.0108 
3.27 
3.22 * 
1.20 

shuffled 
arrangement 

* With this tune, the expected value of V~ and VI is 3.79 

and it is 2.34 for VII. 
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Table 2. M = 12 (twelve dipoles shuffled each time); v = 28.8 

expected average of largest of shuffled 
1,000 cases 1,000 cases arrangement 

I. 0.0322 0.0328 

II. 0.0322 0.0334 

III. 0.0109 0.0112 

IV. 0.0224 0.0277 

V. 2.34 2.36 

VI. 2.34 2.23 

VII. 3.79 4.33 
_____________--_____ 

0.0665 0.0087 0 

0.0777 0.0070 0 

0.0303 0.0025 0 

0.0662 0.0057 0 

5.06 1.26 45 

5.12 1.14 30 

11.9 1.19 4 

M = 12; v = 28.4 

Shuffled arrangement I. 0.0097 

II. 0.0070 

III. 0.0034 

IV. 0.0165 

V. 2.90 

VI. 3.49 

VII. 1.16 

rank 

Conclusion 

With the Gaussian distribution, it seems possible to achieve an im- 

provement of factor four to five over the statistically expected values 

without too much sacrifice in the nonlinear distortion. There is no 

difference in the performance between M=8 and M=l2 and the tune dependence 

of the performance is acceptable when the change in tune is less than s 0.5. 
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